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Abstract 

A numerical round robin for .finite element post- 
processorsjbr weakest-link failure probability predic- 
tions has been analysed. Three selected problems were 
analysed by the participants using a number of 
d(fferent postprocessors. In general, good agreement 
was obtained jor the predicted mean nominal failure 
stress. The predicted values for the failure probability 
show much more scatter due to the sensitivity of  this 
quantiO' to integration errors. 

Ein numerischer Sammelbrief fiir Finite-Elemente 
Postprozessoren zur Vorhersage der Versagenswahr- 
scheinlichkeit schwiichster Bindungen wurde analy- 
siert. Drei ausgewiihlte Probleme wurden yon den 
Teilnehmern mit Hilfe verschiedener Postprozessoren 
analysiert. Im Allgemeinen wurde eine gute Uber- 
ehTstimmung der vorhergesagten mittleren nominalen 
Bruchspannung erreicht. Die vorhergesagten Werte 
der Bruchwahrscheinlichkeit dagegen zeigen eine 
weitaus stiirkere Streuung aufgrund der Empfind- 
lichkeit dieser Grb'fle in Bezug auf lntegrationsfehler. 

Cet article relate les rOsultats d'un test interlabora- 
toire des postprocesseurs par dlOments finis, relatif d la 
prkdiction de la probabilitO de rupture au chafnon le 
plus ./bible de composants. Trois problOmes ont dtO 
sNectionnOs puis analysOs par les participants en 
utilisant un certain nombre de postprocesseurs. En 
g~nOral, on a obtenu un bon accord quant glla 

prediction de la valeur nominale moyenne de rupture. 
Par con tre, la probabilitO de rupture est beaucoup plus 
dispersde, en raison de la sensibilitO de cette grandeur 
aux erreurs d'intdgration. 

1 Introduction 

17 

In recent years the description and prediction of  the 
mechanical behaviour of  modern ceramic materials 
has been the subject of  a number of  analyses. Brittle 
fracture and slow crack growth have been analysed 
both experimentally and theoretically with the 
Weibull statistic distribution used to model the 
statistical distribution of  strength of these materials. 
Experimental data are gathered from a variety of 
test methods, not only for material characterization 
but also for design purposes. Various methods have 
been proposed to transfer data from one test to 
another  or to use these test data to make strength 
predictions for more complicated situations which 
give rise to multiaxial stress systems. To use these 
mathematical models in a complex body it is usually 
necessary to use a finite element program. The 
mathematical models for the failure probability 
require an integral of  stress over a volume or surface 
and for this purpose a number of  postprocessors 
have been developed to allow data from the finite 
element program to be used to evaluate the failure 
probability.1 - 5 

In 1990 an informal working group was formed to 
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discuss these postprocessors. The working group 
was named WELFEP, which stands for Weakest- 
Link  Failure Probability Prediction by Finite 
Element Postprocessors. After a first meeting in 
September 1990 it was decided to start a common 
activity, initially focusing on two topics: 

- -Gather ing  information on the design and 
structure of the various postprocessors by 
means of a questionnaire. 

- -Compar ison  of predictions of the postpro- 
cessors for a number of selected problems 
(numerical round robin). 

The results of these activities were discussed in April 
1991 and have been presented in an internal report. 
Also in 1991 the working group became part of 
Technical Committee 6 'Technical Ceramics' of the 
European Structural Integrity Society (ESIS). 
Within the working group it was felt that the results 
of these first common activities may provide 
valuable information for a broader audience. 
Therefore this paper is an attempt to give an 
overview of the findings of the questionnaire and of 
the round robin. 

2 Theoretical Background 

In all the postprocessors employed in the analyses 
the key quantity to be evaluated is the probability of 
failure Pf according to weakest-link statistics of a 
component  containing volume and/or surface flaws. 
A number  of  models have been proposed in 
literature on how Pf can be calculated for a given 
geometry, stress state and fracture criterion. Among 
many others, the models of Weibull, 6 Freudenthal v 
and Batdorf & Heinisch s are frequently mentioned. 
Apart from whether or not a particular model is 
valid for a certain material in a certain application, 
there is generally little consistency in the way the 
various models are formulated. The formulation 
adopted by the working group is given by 6-1° 

[ ( ; (  )] __ LT Sn°m - -  ]~ V 
Pr v = 1 - exp rn" Su Vu ( (1) 

for volume flaws and 

(2) 
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for surface flaws, where 
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V = volume of component  
A = surface of component  

= Weibull modulus 
= a given nominal or reference stress 
= strength per unit volume V u or unit 

surface A u 
= unit volume 
= unit surface area 
= stress volume integral 
= stress surface integral 
= equivalent fracture stress 
= surface of a sphere with unit radius 
= circle with unit radius 
= F[1 + (l/m)] with F as the gamma 

function 

If the normal stress a, and the shear stress z acting on 
a single crack are defined by 

a. = n. o-.n (5) 
z 2 = n ' a  2 " n - a  2 (6) 

with a as the stress tensor and n as the normal vector 
to C a or B,, some specific models frequently 
mentioned in literature can be given as: 

failure or normal stress averaging - - M o d e  I 
(NSA): 6 

0" if a . > 0  
aeq = if a. < 0 (7) 

- -Max imum non-coplanar strain energy release 
rate (GMAX):11 

4 - { 0 " 4 + 6 ° " 2 z 2 + z 4  i f a " > 0  (8) 
aeq - if a. _< 0 

Implementation ofeqn (8) in eqns (1) to (4) leads 
to the model proposed by Lamon & Evans 12 
(multiaxial elemental strength model--MuESt).  

--Principle of  independent action (PIA): 7 

(Tmq = < Sl>m -~ - < s2>m -~ - <83> m (9) 

Here S 1 -  $2 > $3 are the principal stresses 
derived from the stress tensor o- and 

{0 if x > 0  
<x> = if x < 0 

In the case where a, < 0, alternative formulations 
have been proposed in which tre, is obtained from a 
weighted combination of the normal and shear 
stress acting on the crack. 13 

3 Numerical Aspects 

In calculating Pf some essential input like the 
appropriate fracture criterion and parameters such 



WELFEP: a round robin 19 

as m, S,, V~ and Sno m are needed. It must be 
mentioned that S. and V u (A u) are not independent 
variables, as S, gives the strength per unit volume V~ 
(Au) in the case of uniform triaxial (biaxial) tension. 
Then, in most postprocessors, Pr is calculated using 
the intermediate results for E(V) or E(A) (or a related 
quantity). The integration with respect to V or A is 
done by summing over all appropriate elements in 
the FE mesh. For sake of briefness and confining the 
discussion to volume flaws, E(V) can then be 
obtained from 

V. 
Z(V)= ~Z(V~) (10) 

i ~  V 

where N v is the number of relevant volume elements 
and Z(Vi) is the stress volume integral for element i 
which is obtained from relation (3): 

E(V~) = ~ F~dV~ (11) 
i 

with F~ given by 

1 o-~q dB~ (12) 
u 

The integration over B~ (or C~ in case of surface 
flaws) is also referred to as orientation integration. 

Now, in the postprocessors considered, eqn (11) is 
evaluated either by subelement integration or by 
Gauss-Legendre integration: 

---Subelement integration: 
With subelement integration the elements are 

divided into N~ subelements in which the 
stresses are assumed constant. Then, for each 
subelement k, eqn (12) can be evaluated to yield 
F~ k. If the volume of the subelement equals Vi k 
then eqn (11) yields 

1 N~ 
Z(V3 = ~ k=~2 F~kv~ k (13) 

--Gauss-Legendre integration: 
For Gauss-Legendre integration the stresses 

are sampled at Ng Gauss points. Then, for each 
Gauss point k, Fi k can be determined and 
combined to yield 

1 N 
Y(V~) = ~ a~ Fikw~ (14) 

with w~ as the appropriate weight factor for 
integration point k. 

In the postprocessors considered F~ a is evaluated by 
two-dimensional Gauss-Legendre integration or by 
two-dimensional midpoint-rule integration. 

The procedure outlined has been implemented in 
the various postprocessors in a more or less similar 
manner. One of the goals of the round robin was to 

see whether differences in the implementation yield 
comparable results. It was known beforehand that 
integration errors can lead to large errors in Pf 
because, for larger values of m, a~q can vary strongly. 
A measure which is not so sensitive to integration 
errors is given by the predicted mean value for Snom: 

F G 1 '/'' 
&ore----  uL ] 
Snom= gu t  Au 11/m 

LAZ(A)/ 

for volume flaws 

for surface flaws 

(15) 

Then eqns (1) and (2) yield 

P f z  1--exp~--(%'X]m({n°mX~m 1 (16) 
k \ m ' /  \Snom// 3 

If the error ep in the predicted failure probability is 
defined by 

Pf,calc -- 6,exact (17) 
gP ~ Pf.exact 

and the error e~ in the predicted value for Sno m by 

'-~nom,calc -- '~norn.exact 
Es = Snom.exact (18) 

eqn (16) can be used to relate ~p and e s in case of small 
G- Using a Taylor expansion one obtains 

1 - Pf,c,l¢ In (1 - Pf,ca,¢)mG (19) 
~P -- 6,ca1¢ 

Now, for small failure probabilities, eqn (19) can be 
written as 

~p = -  me~ for small q and Pf (20) 

Equation (20) shows that ~, has to be small for larger 
values of m to give a reliable prediction for Pf. 
Therefore an accurate integration scheme is required 
to deal with higher values of m. 

4 Results of  the Questionnaire 

The questionnaire circulated contained questions in 
four categories: 

--General  information with respect to the 
development of the postprocessor. 

--Characteristics of the postprocessor. 
--Special information about calculation 

methods. 
--Experiences/problems. 

The questionnaire was completed by ten partici- 
pants representing eight different postprocessors. 

4.1 General information 
The results show that all postprocessors are written 
in Fortran. The postprocessors used are to be 
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interfaced with an FE program in order to obtain the 
necessary element data and stresses. Some post- 
processors have an interface to one FE program, 
others to two or more, although no universal 
interface seems to be present. A variety of FE 
packages have been mentioned: ABAQUS, ADINA, 
ANSYS, MFIELD, NASTRAN, PAFEC and 
SYSTUS. The programs run on a variety of micro- 
and supercomputers. 

4.2 Characteristics of the postprocessor 
Most postprocessors support fracture criteria such 
as normal stress averaging (eqn (7)) and principle of 
independent action (eqn (9)), although some provide 
several other fracture criteria as well. In most cases 
2D and 3D structures can be analysed with both 
volume and surface flaws. The type of elements 
supported are generally 2D isoparametric plane 
stress elements with 4 or 8 nodes and 3D isopara- 
metric brick elements with 8 or 20 nodes. Some 
programs support much more types of 2D and 3D 
elements. 

4.3 Calculation methods 
As mentioned in Section 3, either subelement or 
Gauss-Legendre integration is used for surface/ 
volume integration. In the case of subelement 
integration for 2D elements 3 ,3  or 4 , 4  and for 3D 
elements 3 * 3 • 3 or 4 , 4 , 4  subelements are used. 
For Gauss-Legendre integration a four-noded 2D 
and an eight-noded 3D element with 1 Gauss point 
(centroidal value), an eight-noded 2D element with 4 
Gauss points and a 20-noded 3D element with 8 
Gauss points are used. Some programs sample at 
more Gauss points to increase the accuracy of the 
integration process. 

To carry out the orientation integration to 
determine the factors F~ k mentioned in Section 3 (eqn 
(12)) generally Gauss-Legendre integration is ap- 
plied with 10, 15 or 20 Gauss points for integration 
over C u and 10,10, 15,15 or 20,20 Gauss points 
for integration over Bu. 

To be able to identify the surface of a component, 
which is then used in a surface flaw analysis, several 
techniques are employed. One is to add a special 
surface mesh (shell or beam elements with zero 
stiffness) in the FE calculations which does not 
contribute to the stiffness of the component. Then 
the FE package will be able to calculate the stresses 
in these surface elements which subsequently can be 
used in the postprocessor. This procedure implies 
that the FE calculation will be more time consuming. 
An alternative is that the postprocessor contains an 
algorithm to identify the surface of a volume mesh 
and to extrapolate the stresses from the interior to 
the surface. 

Compressive principal stresses are treated in some 

different manners depending on the fracture cri- 
terion. In the case of PIA (eqn (9)) they are either 
neglected or weighted with a negative weight factor. 
In the case of NSA (eqn (7)) or GMAX (eqn (8)) 
negative principal stresses may exist as long as the 
normal stress a n is positive. If a n is negative either an 
o r  O'eq is set to zero. 

4.4 Experiences/problems 
Most programs can be run interactively or use a 
special input file. Some programs are highly modular 
and can be modified relatively easily to incorporate 
other fracture criteria or element types, while others 
are more dedicated and cannot be modified without 
expert knowledge. 

Most participants did some tests with the 
program to assure correctness of the code, but also 
stated that a finer mesh than normally would be used 
for a conventional FE analysis is needed in the case 
of steep stress gradients and/or a high value of the 
Weibull modulus m. Ideally, mesh adaptation for use 
in the postprocessor is not necessary if the mesh is 
sufficiently refined to yield sufficiently accurate 
stress predictions. In practice, however, a sensitivity 
analysis based on mesh refinement is almost 
unavoidable to assure correctness of the results. In 
general, it can be stated that the larger the number of 
subelements or Gauss points for the integration with 
respect to F or A, the less mesh refinement is needed. 

5 Results of the Numerical Round Robin 

In the numerical round robin three test cases were 
analysed by the participants. In developing these test 
cases it was recognized that any influence of the FE 
package should be ruled out. Therefore problems 
were chosen such that it could be expected that any 
FE package used would yield the same stresses 
throughout the component. Isotropic linear elastic 
material behaviour was chosen. Test case 1 deals 
with pure bending of a beam in which the displace- 
ments at the ends of the beam are prescribed as 
shown in Fig. 1. In this case analytical solutions can 
easily be obtained. Test case 2 (Fig. 2) deals with 
four-point bending of a notched beam for which no 

I* 
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/ 
/ -  

/ 

Fig. I. Finite element mesh and boundary conditions for 
WELFEP test case 1: pure bending of a beam by prescribed 

displacements (plane stress analysis). 
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Fig. 2. Finite element mesh for WELFEP test case 2: four-point 
bending of a notched beam (plane stress analysis). The lower 
picture zooms in on the finite element mesh near the notch. 

analytical solution is available. Test case 3 (Fig. 3) 
deals with pure torsion of  a tube in which one end is 
clamped and on which the displacements at the 
other end are prescribed. In this case an analytical 
solution can also be given. 

In all test cases a standard mesh was given, 
together with values for parameters, as E, v, S u, V u, 
Sno m and m. Optionally other meshes or element 
types could be analysed. Of  particular interest was 
the influence of  m as it was expected that for larger 
values of  m the results are more sensitive to 
integration errors (see also Section 3). The results can 
now be analysed in two ways: either by looking at 
differences/errors in the predicted value for the mean 
nominal s t r e s s  '~nom or by looking at differences/ 
errors in Pr. From the analysis given in Section 3 it is 
clear that these are related and that small errors in 
S, om are propagated by about  a factor - m  in errors 
in Pr. Therefore here only attention will be paid to 
errors i n  '~nom" 

Fig. 3. Finite element mesh for WELFEP test case 3: pure 
torsion of a tube. The mesh contains one element along the 

length of the tube (3D stress analysis). 

In elaborating the results obtained by the various 
participants the need for a standardized notation 
and parameter interpretation became clear. Strongly 
different results were reported, mainly due to 
translation of  the unit strength S u into an appro- 
priate scale factor for the specific postprocessor. 
When straightforward corrections were applied the 
results became well comparable. Analysis of  the 
results revealed that those postprocessors that use 
4 • 4 or 4 • 4 • 4 subelement or Gauss integration tend 
to yield more accurate results than those which 
apply 3 • 3/3 • 3 • 3 subelement or Gauss-Legendre  
integration (the latter yield comparable results). This 
can be illustrated by considering Figs 4 and 5, which 
show the errors in the predicted values for S,  om in the 
case of  volume flaws for cases 1 and 3 for m = 25. 
Postprocessors pl, p2, p3 and p4 all apply 3 , 3  
subelement integration or Gauss-Legendre  integra- 
tion, whereas p5, p6, p7 and p8 use 4 , 4  subelement 
or Gauss integration. In general, however, the 
differences/errors are limited. The errors shown in 
Fig. 4 were not quite representative, as for test cases 
2 and 3 the differences/errors are only about  1%. 
This also leads to the conclusion that the mesh used 
in test case 1 (Fig. 1) for a number of  postprocessors 
is not fine enough. An important  observation is that 
in almost every case Snom is overestimated, which 
also means that Pf is systematically underestimated. 
However,  this is probably due to the fact that the 
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Fig. 4. Errors E s for test case 1 and m = 25. pl, p2, etc., are 
different postprocessors. (a) PIA= principle of independent 
action (eqn (9)); (b) NSA = normal stress averaging (eqn (7)). 
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Apar t  f rom this the postprocessors can also be used 
for lifetime predict ion under  slow crack growth  and  
for analysis o f  proof-testing.  These topics are likely 
to become part  o f  cont inued  col laborat ion within 
the working  group. 
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Fig. 5. Errors e,~ for test case 3 and m= 25. pl, p2, etc., are 
different postprocessors. (a) PIA=principle of independent 
action (eqn (9)); (b) NSA = normal stress averaging (eqn (7)). 

stresses are monoton ica l ly  decreasing in all test 
cases. 

6 Concluding Remarks 

An evaluat ion has been made  o f  features and  results 
for selected problems of  a number  o f  postprocessors 
for weakest- l ink failure probabi l i ty  calculations.  
F r o m  the results o f  the round  robin calculat ions an 
indicat ion abou t  the differences between various 
postprocessors can be obtained.  Cau t ion  is neces- 
sary in the case of  steep stress gradients  and /o r  high 
Weibull moduli ,  as in these cases a finer mesh m a y  be 
required. The need for a s tandardized no ta t ion  o f  
the failure probabi l i ty  relat ion has become clear as 
the different p rograms conta in  a different inter- 
pre ta t ion o f  the scale factor.  

Within  the work ing  group it has been decided to 
cont inue  the c o m m o n  activity by analysis o f  some 
addi t ional  problems in which stress mult iaxial i ty  
plays an impor t an t  role. Then  the influence o f  the 
choice o f  the fracture cri terion becomes much  more  
p ronounced  as s h e a r  stresses become impor tant .  
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